SUSTAINABILITY

GARDEN CITIES AT THE URBAN SCALE

Can integration of garden cities at the urban scale create sustainability benefits?

Comparison of the sustainability performance between a compact city and a garden city

What is a sustainable urban development?

Sustainable development | Development which meets the needs of the present without compromising the ability of future generations to meet their own needs.

Density, layout, distribution of green areas, provision of facilities and services, variety of building types (physical characteristics, life cycle carbon footprint) and transport

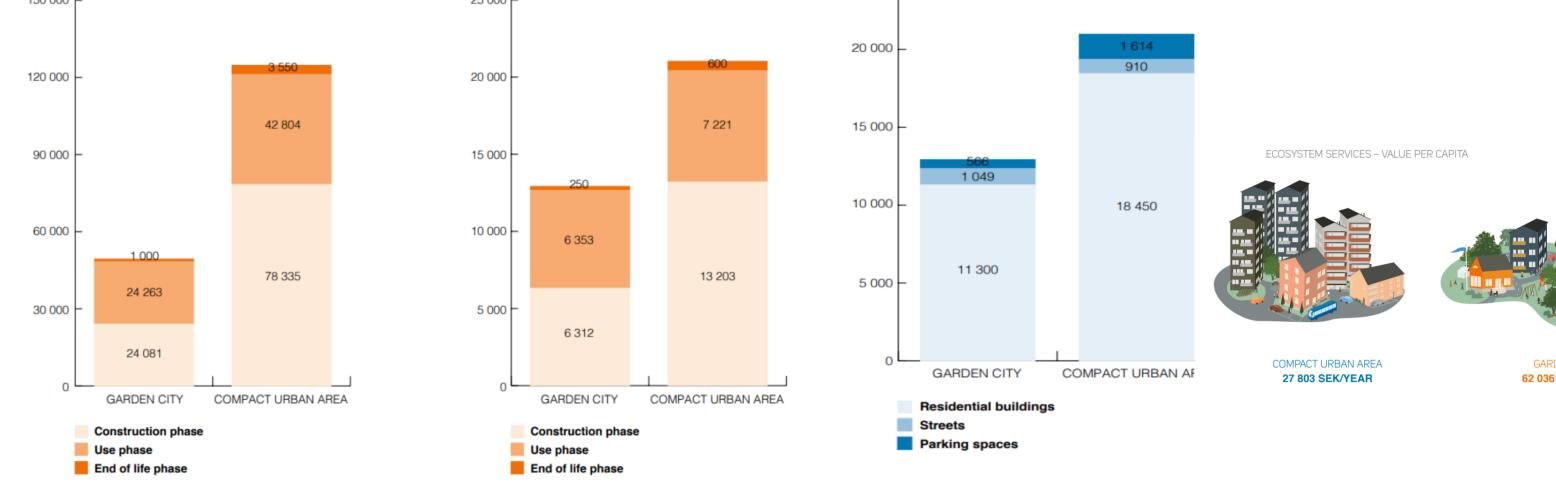
RESULTS

Carbon footprint from the residential sector, roads and parking spaces (LCA)

CLIMATE IMPACT AT AREA LEVEL DISTRIBUTED OVER LIFE CYCLE PHASES (TON CO₂e)

CLIMATE IMPACT PER CAPITA DISTRIBUTED OVER LIFE CYCLE PHASES (kg CO₂e/capita)

CLIMATE IMPACT PER CAPITA (kg CO₂e/capita)


infrastructure (Jenks & Jones, 2010) are all important for the sustainability performance of a city.

What is a garden city?

Garden cities | a combination of the "advantages of the most energetic and active town life, with all the beauty and delight of the country" (Howard, 1898)

Swedish contemporary garden cities are characterised by moderate densities, with a variety of housing types, a mix of low-rise homes and services, private gardens and planted roads, allowing solar light to penetrate the houses

Garden city - in the district: 60% lower CO₂e emissions in the district

30% higher monetary value of ecosystem services in the district

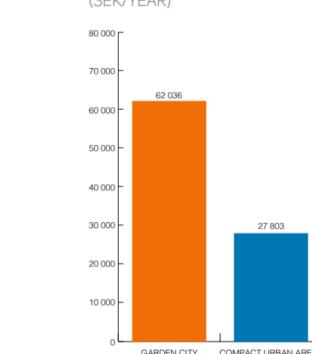
Garden city - per capita: 38% lower CO₂e emissions per capita 55% higher monetary value of ecosystem

services per capita

Ecosystem services (Monetary evaluation)

Why is this important?

- ✓ **Urbanization:** increasing demand for housing, high costs in the city center
- ✓ Climate change
- ✓ **Urban sprawl:** unsustainable cities

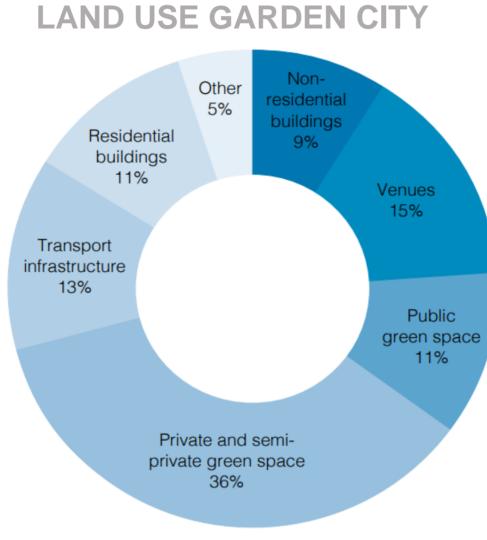

OBJECTIVES

Preferences: 7/10 Swedes want to live in a single-family house or semidetached house

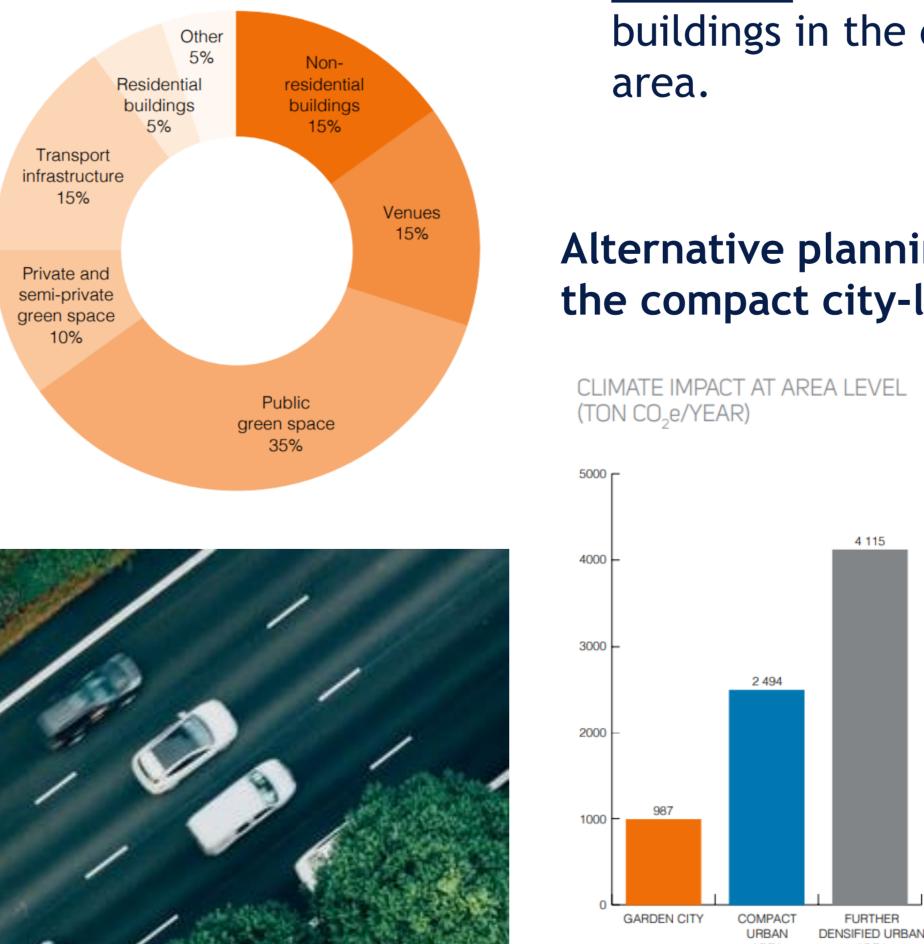
• Ecosystem services are TOTAL VALUE FOR THE AREA crucial for creating resilient urban environments that are planned and developed in interaction with nature. Value in monetary terms

Comparison of the sustainability performance between a compact city and a garden city located in a suburban area in Stockholm.

buildings in the two districts. Transportation and ecosystem services have also been analysed as well as some social aspects.


Characteristics of the two scenarios

Garden city	
ATTRIBUTE	VALUE
Number of housing units	476
Number of apartments	1 280
Inhabitants	3 806
Population density	59 pers/ha
Public green space	32 m²/capita
Private and semi-private green space	61 m²/capita


Type of housing units - 2 types of detached single-family houses, semi-detached 2-storey houses and 4-storey wooden multi-family buildings

Compact city

ATTRIBUTE	VALUE
Number of housing units	72
Number of apartments	1 746
Inhabitants	5 940
Population density	92 persons/ha
Public green space	47 m²/capita
Private and semi-private green space	11 m²/capita

LAND USE DENSE, COMPACT **URBAN AREA**

services marked in blue

for the ecosystem

Sensitivity analyses

Alternative materials in the buildings of the compact city-like neighbourhood

- Installation of silicon solar cells on 50% of the roofs in both the garden city and the dense, compact urban area.
- Choosing low-carbon concrete for the residential buildings in the dense, compact area (a part of the Portland cement replaced by fly ash and slag)
- Choosing wood instead of concrete for the residential buildings in the dense, compact

Alternative planning (densification) of the compact city-like neighbourhood

80 000

70 000

60 000

50 000

40 000

30 000

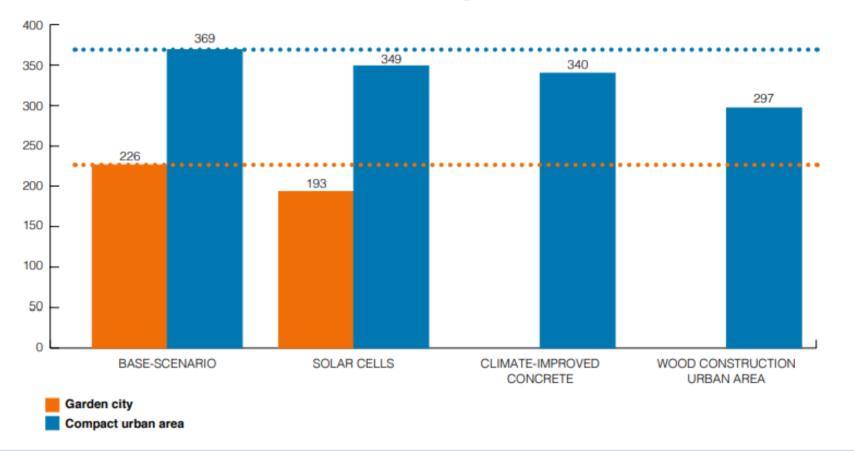
20 000

10 000

GARDEN CITY

COMPACT

JRBAN


FURTHER

DENSIFIED URBAN

SERVICES PER CAPITA (SEK. YEAR)

THE VALUE OF ECOSYSTEM

CLIMATE IMPACT FROM RESIDENTIAL BUILDINGS PER CAPITA PER AREA FOR EACH ASSUMPTION (KG CO_e/CAPITA, YEAR)

Regardless of material choice - the garden city has a lower climate impact than the dense, compact urban area.

• Population: 9 900 residents, compared to 5 940 in the dense compact urban area, and 3 806 in the garden city.

Private and semi-private green space

Type of housing units - identical multi-storey concrete buildings

Transport - mobility

- No clear connection between building type and car ownership, but car ownership per capita is generally greater in areas with single-family houses than in denser urban areas, while the total car number in compact cities is higher due to larger population.
- **Provision of public transportation:** A residential area with more than 50 inhabitants/hectare can support an efficient public transport system. therefore the garden city assumed here can provide a basis for a well-functioning public transport system
- Why is car ownership per capita higher in the Garden city?
 - Increased parking space supply easier access
 - Socioeconomic aspects, e.g. families with children
 - Functional mix access to urban qualities and services

Notes on energy mix used

For heating and electricity of the buildings the following have been assumed (based on current praxis in Sweden): compact city's buildings use district heating with an emission factor of $62g CO_2$ -eq/kWh and electricity with an emission factor of 102g CO_2 -eq/kWh. The multifamily building of the garden city uses geothermal heat pump and solar panels, while the single-family and semi-detached houses use exhaust-air heat pumps, which is the dominating heat source in new Swedish single-family houses.

CONTACT

Efstathia Vlassopoulou Efstathia.vlassopoulou@anthesisgroup.com Agneta.Persson@anthesisgroup.com Agneta Persson

• Green Area factor (GAF): still 0.5, made possible by partially replacing the green areas on the ground with green roofs.

Results:

The further densified urban area generates:

70% higher CO₂ emissions and

22% lower ecosystem services value per capita than the compact area.

